

Design of Connections in Tubular Structure

Lokesh Rathore¹, Jaswant Singh²

¹Post Graduate student in structural engineering ,department of civil engineering , CBS Group of Institutions, Fatehpuri, Jhajjar , Haryana, India

²Assistant Professor, department of civil engineering , CBS Group of Institutions,Fatehpuri, Jhajjar , Haryana, India

Abstract – Due to advancements in the construction industry a slow shift from RCC structures to steel structures can be seen. Steel tube structures have started dominating construction industry due to its various advantages like they perform better in twisting and minor direction bending capacity, are better in buckling due to less slenderness ratio, provide better earthquake performance, no shuttering is required in composite columns, Less Construction Time is required.

All these members and components are joined by connections, so it becomes important to design the steel junction connections precisely and with utmost care. These connections are responsible for the transference of forces or loads from one member to another. In this project various connection details have been designed manually.

Key Words: Steel connections, Steel tubes, Shear connections, Bolted connection, Fixed welded connection.

1. INTRODUCTION

Connection design is One of the most important components of steel detailing. It is the essential part of the process which makes sure that the components hold together as they probably should. Dy by day Engineers are developing new ideas and coming up with new and improved challenging designs. Without proper connection designs, the completion of new steel tubes building buildings is not possible. The steel framework, which is concealed under a sleek facade, is put to extreme pressures by the building's tall heights and unusual geometries. There is a great demand for precise steel details and connection design.

Producing steel detailing and connecting designs is a difficulty for all buildings, of course. It is also important for less complex construction projects, such as factory structures, apartment complexes with distinctive balconies, and bridges. To ensure that lives aren't put in danger, they all need precise, dependable steel details and connection design

Fundamentally, the connectivity element of steel detailing is what is used to calculate the transference of forces between sections of steel. Basically, these forces can be categoriesed into : Beam to beam, bracing connections, column to beam, and splice. A connection must be designed for connectivity in order to assure that it won't fail due to the applied load detail. It must also take into account the requirements of fabricators and erectors while creating and putting in place the various components. The method of verifying steel connections must include demonstrating the quality of welds and confirming that the stresses placed on the steel plates, sections, and bolts holding them together are all well within the tolerances of the materials that are specified.

1.1 TYPES OF CONNECTIONS

On the basis of different loads broadly steel connections can be categorized into following types.

- **1.**Tension Connections
- 2.Compression Connections
- **3.Shear Connections**
- 4.Moment Connections

Steel connections can further be classified on the basis of the restraint they provide. These classifications (in decreasing restraint level are as follows:

- 1.Fully restrained moment connections
- 2.Partially restrained moment connections
- 3.Simple shear connections

The fully restrained connections can resist the maximum end moments and it allows minimum amount of end rotation while as simple shear connections supports lower end moments and allows maximum end rotation. Partially restrained connections lie in the middle of fully restrained and the simple shear connections

2. AXIAL CONNECTON FOR BRACINGS

Grade of Steel, fy	= 345 N/mm2	
Details of Section (D x B x t)	= 250x250x10mm3	
Area of Section, Ag	= 9600 mm2	
Diameter of Bolt	= 24 mm	
Grade of Bolt	= 8.8	
No. of Bolts Provided	= 18 Minimum 31 Bolts	
No. of Bolts Provided along Width of Plate =3		
Provided Thickness of Plate	= 32 mm	

2.1 Welded connection for bracing

Fig -1: Typical detail for welded bracing connection

As per is 800 2007 connection should be designed for tension force of 1.2 x Ag x Fy

Tensile force for connection

= 1.2 x Ag x Fy = 1.2 x 9600 x 345 = 3974.4 kN

Taking Plate Strength T_{dg} = Tensile force for connection 0.9 x (Width of plate) x (345/1.25)x 32 = 3974.4 kN So, Required Width of plate A adjacent to plate B = 500mm

Plate to Gusset Plate Connection (Wielding Required)

Provided Weld Thickness	= 32 x 0.7 =22 mm
Length of Weld	= <u>Area of Weld</u>
	Weld Thickness
Area Of weld between plate A and I	В
$= 3974.4 \ge 10^3 \ge \sqrt{3} \le 1.5/345$	= 29929.8 mm2
Length of Weld	= 29929.84/22
	= 1426 mm
Length of Weld except on width of	plate
= 1426-500 = 926 mm	

2.2 Bolt connection

= 926/2 = 463mm

Length of Weld on one side

Tensile force for connection Shear Capacity of Bolt = 3974 KN

f_u	x	Ar	ıb
γ _{m1}	x	V	3

Anb = Net area of bolt = 0.78 x area of shank = $800/125 \text{ x} 352.86/\sqrt{3}$ = 130.38 KNNo. of Bolts required = 3974.4/130.38= 30.48 31Area of weld between member and plate A = $3974.4 \text{ } x 10^3 \text{ } x \sqrt{3} \text{ } x 1.5/345$ = 29929.8 mm2Allowable weld on member = 0.7 x10 = 7 mmLength of weld = 29929/(7 x2) = 2137 mmLength of weld on both side of member = 2137/2

= 1068 mm.

2.3 Shear connection for secondary beams

Section Details (DxBxt)	= ISMB350
Grade of Steel	= 250 N/mm2
Diameter of Bolt	= 16 m
Grade of Bolt	= 8.8
No. of Bolts Provided	= 4
Pitch Distance of Bolts,p	= 75 mm
Edge Distance of Bolts,e	= 50 mm
Thickness of Plate	= 25 mm
Thickness of Weld	= 8.5 mm

FOR SHEAR FORCE

Fig -3: Typical detail for bolted shear connection

Loads on floor

Self-weight of deck slab		
$= (0.080 + 0.0375) \times 25 + 0$.001 x 78.5	= 3.016 kN/m2
Floor fininsh		$= 0.05 \times 25$
		= 1.25 kN/m2
Service load	= 1 kN/m	2
Partition wall load	= 1 kN/m	2
Live load	= 3 kN/m	2
Total load	= 9.266 k	N/m2

IRJET

Contributory width of deck slab	= 2m
UDL on secondary beam	= 18.532 kN/m2
Total factored shear at support	= 1.5x 7.5 x 18.532 /2
	= 105 KN

Bolted Connection

Shear Capacity of Bolt, Vnsb	
= (fu x ($nn x Anb$)) / $\sqrt{3}$ Ymb	=(800 x 1 x 157) / $\sqrt{3}$ /1.25
No. of Bolts Required	= 105 / 58 = 1.8
Provided No. of Bolts	= 4
Check plate strength –	
Distance of 1st row of bolt from	n member = 75 mm
Diatance of 2nd row of bolt fro	om member = 150mm
Moment at main member face	
$= 0.075 \times 105 \times 0.5 + 0.15 \times 105$	x0.5 = 11.82 knm
Assume 12mm thk. Plate	
Moment capacity of plate	= ZeFy / ymo
1 3 1	$= bd^2/6 \times 350/1.1$
	= 11.82 KNm
d (depth of plate) = $\sqrt{(11.82)}$	x10 ⁶ x 1.1 x 6)/(12x350))
d	= 136 mm
Provide 350 mm deep plate	
Bending capacity of 350 mm d	eep plate = ZeFy / γ_{mo}
$= (12 \times 350^2 \times 350) / (6 \times 1.1)$	= 78 KNm
Shear strength of plate	$= AgFy / \gamma_{mo}$
- *	$= 12 \times 400 \times 350/1.1$
	= 1336 KN

Now combined ratio in axial and bending

Check welding of connection plate to primary member

Provide thickness of weld	l = 6mm on each side
Shear stress in weld	= (105x1000)/(6x350x2)
	= 25 N/mm ²
Section modulus of weld	$= bd^2/6$
	$= (6 \times 350^2 \times 2)/6$
	$= 245000 \text{ mm}^3$
Bending stress in weld	$= (11.82 \times 10^6) / 245000$
	$= 49 \text{ N/mm}^2$
Equivalent stress, Fe	$=\sqrt{(fa^2+3q^2)} \leq fy/(\sqrt{3}\gamma_{mw})$
fa = 49 N/m2	$=\sqrt{(49^2+25^2x^3)} \le 490/(\sqrt{3x}\ 1.25)$
q= 25 N/mm	$= 66 \text{ N/mm}^2 \le 226 \text{ N/mm}^2$
	Safe

2.4 Fixed Bolted Connection Detail for main beam to main beam (on view 5-5 in figure)

Moment,M (From Etab)	= 292 kNm
Shear, V (From Etab)	= 242 kN
Diameter of Bolt	= 20 mm
Grade of Bolt	= 10.9
Grade of Steel Plate	= 350 N/mm2
Plate Details (DxB)	= 400 X 600 mm2
Depth of Stiffener above or below memb	oer = 100 mm
Distance Between Stiffner plates	= 100 mm

Distance between upper bolt row and lower bolt row = 500 mm		
Tension in Extreme Bolt, T	$= 292 / (0.5 \times 0.4)$	
	= 146 kN	
Shear in each bolt	= 242/8	
	= 30.25 kN	
Tension Capacity of Bolt $= 0.9 \times 0$.78 x 314.16 x1000/1.25	
	= 176.43 kN	
Shear Capacity of Bolt =1000x0	$.78x314.16)/(\sqrt{3}) \times 1.25)$	
	= 113.18 kN	
Combined Shear and Tension		
$= (146/176.43)^2 + (30.25/113.1)^2$	$= (0.83)^2 + (0.27)^2$	
	= 0.76 < 1	
	Connection is SAFE	
Design of Plate at View 5-5		

Moment due to Tension in bolt	= w x l / 8
	$=146 \times 0.1 / 8$
	= 1.83kNm
Thickness of Plate =1.22	$x(100-22)x d^2/6 x 350/1.1$
Now, Thickness of plate Calculat	ted from $= 1.83$ kNm
_	= 1.83 x 106
= 1.2x(100-22)xd2/6x350/1.1	
d2	= 368.6813187 d
	= 20 mm

2.5 Fixed Welded Connection Detail

On view 4-4 in figure -

Grade of Steel , fy	= 350
Ultimate Strength of Steel, fu	$= 490 \text{ N/mm}^2$
Section Details (DxBxt)	$=400 \times 200 \times 10$
Area of Cross Section, A	$= 116 \text{ cm}^2$
Elastic Section Modulus, Ze	= 1217.9 cm ³
Plastic Section Modulus, Zp	= 1502 cm ³
Shear from Etabs, V	= 252 kN
No. of Stiffeners on one side of member	= 3
Depth of Stiffener above and below memb	per = 100 mm

Fig -4: Typical detail for welded tube column beam junction connection

As per IS 800 -2007 all column beam junction should be		
designed for 1.2 times plastic moment capacity		
Design Bending Strength of Steel Beam, Md		
$= \beta_{\rm b} x \text{Zp} x \text{fy} / \gamma_{\rm mo} x 1.2$		
= 1.2x1x1502000x350/1.1	= 573.49 kNm	
Shear force at face of column	= 252 kN	
Assumed Height of Stiffener (View 4-4)= 100 mm		
Area of weld for shear	$=(400+(200x3)) \times 2 \times te$	
	= 2000te	
Moment of Inertia of weld	200000	
$-(t_{0}\sqrt{400})/(1)/(1)/(600)/(1)/(1)/(1)/(1)/(1)/(1)/(1)/(1)/(1)/(1$		
(200y + a)y 200	JU 222 ((0.2100 J)/ 12212	
= 10666666.66 te + 75000000 te + 999999.96 te + 16000000 te		
	= 10266666666 te	
MOI of Weld	$= 102.67 \text{ x te x } 10^6 \text{ mm}^4$	
Section Modulus of weld, Z	= 102.67/300 xte	
	=34xtex 10 ⁴ mm3	
Moment/ Section Modulus. M/Z		
$=(292 \times 10^{6} \text{Nmm})/34 \times 10^{4} \text{mm}3$ te		
	$= 858.8235294 / \text{te N}/\text{mm}^2$	
Shear Stress	$= 252 \times 10^3 / 2000$ te	
	$= 126/te N/mm^2$	
Faujualent Stress fo	$-\sqrt{f_{2}^{2}+3q^{2}}$	
Nous fo	-9500225204/to	
now, la	= 050.0255294 / te	

q	= 126/ te	
$fe = \sqrt{858.8235294^2 + (3x126^2)} / te$		
Equivalent Stress, fe	= 886.1184202 / te	
Equivalent Stress, fe	= 490/((√3)x1.5)	
	= 188.6	
So,	= 886.1184202 / te	
	= 188.6	
te	= 4.7 mm	
Provide throat thickness	= 5mm	
Required Thickness of weld	= 5 /0.7	
	= 7.1 mm	

3. CONCLUSIONS

Design of steel connection requires vigorous calculations but provides much more control than connection by other building materials.

Upon experience we have understood that steel connection is much more safer than RCC connection.

Any two steel members can be joined by many numbers of connection possibilities as can be seen by the literature above.

The need to calculate modular ratio (m) becomes nil when two members of same material like steel are connected.

REFERENCES

- Duggal, S.K Limit state design of steel structures. 3-Ghobarah a. et al., "pushover analysis of steel frames", (1997)
- [2] N Subramanian design of steel structures by Limit state method.
- [3] IS 1893(Part 1):2002, (2002), "Indian Standard criteria for earthquake resistant design of structures", (5th revision).
- [4] IS 800: 2007, "Indian Standard criteria for design of steel structure.
- [5] Hassan, O.F., Goel, S.C.(1991)."Modelling of bracing members and seismic behavior of concentrically braced steel frames".
- [6] K.G.Vishwanath, "Seismic response of Steel braced reinforced concrete frames", International journal of civil and structural engineering (2010)
- [7] Khatib, I. and Mahin, S., Dynamic inelastic behavior of chevron braced steel frames, Fifth Canadian Conference on Earthquake Engineering, Balkema, Rotterdam, 1987, pages 211-220