
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 07 | July 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2629

Scale and Load Testing of Micro-Service

Mohan M S1, Somesh Nandi2

Dept. Electronics and Communication Engineering, R.V College of Engineering, Banglore-560050
---***---

Abstract - Representational State Transfer (REST)
Application Programming Interface (API) based micro services
are more used in cloud applications development due to their
inherent benefits. The advantages include scalability,
independent development of micro-service. The designed
system testing should be validated for functionality and load
handling capability. Load testing framework was designed
using the Locust framework. Developed framework could
generate 2,000 requests per second per container initialized in
4 GB RAM system. This system was used to generate the load
for a micro-service. The load was applied to the micro-service
to test scaling features. For testing scale the application was
deployed from 1 pod to N pod configuration. For each
configuration load was applied and response for each
configuration was analyzed and mapped. Testing on higher
number RPS involved delayed response.

Key Words: REST, API, autoscaling, containerization

1.INTRODUCTION

 Web Platform for providing services and information is
common for past decade. Every company wants to host its
services online as internet has reached every corner of the
world. Building a web platform would guarantee
accessibility for every consumer. Designing of a Web
Platform for a company to handle millions of customers
requires latest technology, which can handle that much
amount of load. Scaling a monolithic software application is
difficult for large number of users. Hence developing
application using microservice architecture ensures
scalability [1], load balancing, faster deployment and lower
troubleshooting times.

2. MICROSERVICE ARCHITECTURE

 Monolithic application were the predominant ones before
arrival of micro-service based applications. Earlier an
enterprise application was designed as a single software [2].
Monolithic applications gave rise to various issues such as
scale problems and dependency between software
development teams[3]. Since an enterprise application can be
seen as integration between various components. Idea of
developing these components/services separately was
invented. Micro-service contains various components which
are loosely coupled and independently scalable. The micro-
services would communicate between them using HTTP
REST protocols such as AMQP. To achieve decoupling each
service has separate databases. Consistency in the data is

maintained using various saga mechanism for multiple
services which use same database.

REST Architecture is based on web standards and uses HTTP
Protocols. In REST everything is a resource and accessed
through REST APIs [4]. Server does not maintain any state of
the client. Client needs to maintain the state and based on its
state, request is made to the appropriate API [5]. Resources
in REST can be anything like JSON, HTML, text. Most used is
the JSON response. These are the 4 commonly used HTTP
methods.

1.GET – used to access resource, performs read-only
operation.

2.POST – provides access to create resource.

3.DELETE – provides access to delete existing resource.

4.PUT – provides access to update or create a resource.

3. SOFTWARE TOOLS

 Development of framework for scale testing involves
different software dependencies. Software used in this
project are Pytest, Locust and Docker.

3.2.1 Pytest

 Pytest is python framework for writing functionality and
unit tests for an application. It provides lot of customization
using which we can achieve application specific test cases.
Pytest provides fixtures using which common setup for each
test case can be written. Fixtures can also be defined in
various levels such as testcase-level, module-level and
testrun-level. It also provides dependency decorators using
which dependency between test cases can be implemented.
The Pytest framework can be used to generate allure report
for testcases easily. While running tests in module level all
the files starting from python gets executed for pytest tests.
For a file all the test function names starting from test or
functions using pytest decorator are considered for tests. For
writing test the function which needs to be tested should be
called inside the test function and its output should be
asserted with the expected output. After running the test,
Pytest framework would show the list of failed tests with
where it has failed. If a statement fails, it also mentions what
is the expected assertion. A test can have multiple assert
statements or check statements. If one of them fails then the
entire test fails. Pytest’s debug options are very useful to
debug it.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 07 | July 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2630

1) Pytest output formatting: Pytest provides robust output
formatting with various command-line arguments. The
framework provides methods to define what all needs to be
shown in the traceback. Using “-v” flag the verbosity of the
Pytest tests can be controlled. If “-f” flag is used to generate
output, then other jobs like Jenkins can interpret the output
files. It also provides various plugins which can be used to
automate with other automation jobs.

3.2 Locust

 Locust is a python-based load testing framework which
can be used to test various features of application by varying
the load. The test scenarios can be written in the python
language. It can be used to generate distributed system load,
with master and slave nodes. A general web-based ui can be
generated with locust framework. Load can be scaled by
increasing the number of worker nodes which are
generating load. The test is conducted by swarming a web
application with lot of requests. The system on test can be
written in any language. The locust system is completely
customizable with various features.

3.2.1 Locust Web UI

Locust has a built-in module to display the test results in
web UI. The Web UI has various features such as response
time analysis, Exception-analysis, graphical analysis and
Error analysis. Web UI can be disabled for the test to print
only the test results at the end. It can be configured to
modify the number of users, duration on the web UI itself.
The tests can be run in headless mode where the test results
are shown only at the end of the tests. If the tests are run in
multiple machines, then the master node looks after UI
maintenance and worker nodes look after load generation.
Worker nodes communicate with the master for sending test
reports. The primary job of workers is to span users
specified by master. Locust test can be run in Docker and
Kubernetes environment by creating docker image.

4. TESTING MICROSERVICE

 Microservice testing needs to be done at functionality,
load handling capability and scale. Functionality verification
involves writing test-cases for user transactions. Testing a
greater number of users for deployed application involves
load testing.

4.1 Test framework for API

Pytest framework is used for automation and testing of the
APIs. Pytest provides various features to run series of test in
a customized way. The test results are uploaded in the allure
report for the summary. Requests python module is used in
the test framework to make all the web requests. Initially
session is requested, and the web token is created. On
reference to which API is being tested, a request body is sent.

For given API both positive and negative test cases are
written. Written test cases should cover all these responses
from the API while testing. For positive test cases the request
is generated with proper request body and sent. Then
received response body is verified with the expected
response. For verifying response status code along with each
response parameters are asserted. Some of the APIs are used
by admins only for testing these APIs authentication should
be generated in a different way.

4.2 Scale and Load Tests

Scale testing and load testing are important tools to identify
how the application behaves in deployment. In load testing
the application is swarmed with requests and the response
time of application is checked. The load is created by
creating virtual users on the system which is used for testing
and then each user is assigned with task. The task is
iteratively performed by the virtual user that has been
created. Locust python framework is used for the scale and
load testing in the project. Locust library provides user and
taskset classes which can be utilized to design the tests. In
scale testing the number of Kubernetes pods deployed for
application is increased and response will be monitored and
verified. The response of the application with different
number of pods is analyzed. Based on the analysis scalability
of application will be decided. For any load test, application
needs to be applied with load. In this case load is web
requests. In real world deployment many users log in and do
transactions with the application. To imitate that experience
in test environment a system is designed to spawn multiple
process with each process corresponding to individual user.
To obtain credible test results large number of login
credentials are stored in the file. This file is used to generate
the independent processes in a machine and each user
performs set of tasks iteratively. Locust provides user class
which is inherited by all the user processes in the
framework. Inherited class contains the details of the user
login credentials and other required information for the
login process.

4.2.1 Virtual users

For any load test, application needs to be applied with load.
In this case load is web requests. In real world deployment
many users log in and do transactions with the application.
To imitate that experience in test environment a system is
designed to spawn multiple process with each process
corresponding to individual user. To obtain credible test
results large number of login credentials are stored in the
file. This file is used to generate the independent processes
in a machine and each user performs set of tasks iteratively.
Locust provides user class which is inherited by all the user
processes in the framework. Inherited class contains the
details of the user login credentials and other required
information for the login process.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 07 | July 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2631

4.2.2 Tasksets

 Individual process needs to perform set of tasks in iterated
manner. Set of tasks contains transactions that regular
would do while using notifications-service. All the tasksets
which user needs to use should inherit from taskset class.
Methods named onStart and onStop are used to create setup
and cleanup for the tests. In onStart login and authorization
for the user is done. In onStop the session is ended and all
the resources which are being utilized are released. Taskset
class contains a special class called sequential which is used
to ensure tasks are executed in pre-defined order. Locust
also provide another class called Fast Sequential which is
light weight in number of tasks it supports. But using this
class more virtual users can be created per system. Hence
more loads can be generated.

4.2.3 Master and Worker load tests: Complex
application’s real time load cannot be generated in single
machine. Multiple machines should work together to
generate required amount of load. This configuration of
multiple machines in locust is possible with master-worker
mechanism only. Master consolidates test results and writes
to the web UI where test results are displayed. It also assigns
each worker number of users it should spawn. Worker
spawns the number of processes it is assigned and sends the
report to master. While starting the load testing master
needs to given the number of workers and their IP address.
While configuring all the nodes IP address should be mapped
properly. It should also be ensured that inter-node message
delay is minimal.

5. RESULTS

5.1 API Test results

Pytest framework was used to design the test automation for
designed APIs. In Pytest automation tests are written as
series of tests. Tests are run every time a new code needs to
be verified. This ensures that new code modifications have
not changed existing functionality. Pytest tests are
configured to generate test results as allure report. Allure
report indicates which are the tests that have failed. It also
displays the traceback of the failures. The test outcomes
classified in three categories. those are success, warning and
failure. 59 test cases are written for the APIs. These tests
include both positive and negative test cases. This test
includes verifying of response body along with status codes.
Pytest’s test results customization was used to write test
results as allure reports.

5.2 Locust results

Locust scale and load testing was done for the application.
The load testing was done by increasing the number of users
and analyzing response from the server. In the figure 1
locust test results are being displayed. It is the result of load

testing on single API. There are 120 users who are spawned
as virtual processes in the machine. These users are
independent processes who are sending requests to the
server. In this case all the users are sending request to single
API. The test result contains.

Fig-1: Locust test result display

1. Type contains APIs that are been swarmed by requests.

2. Requests contains total number of requests that have
been made to the API.

3. Fails contain the requests which have response code other
than 200 HTTP status codes. That is number of requests
which the server has failed to respond.

4. Median, Min and Max columns represent how much time
the response has taken for being processed. For all request’s
max, min and average is calculated per API and displayed in
the UI.

5. It also shows current API requests per second and failures
per second

Web UI also has other tabs for showing error instances. It
has charts which shows the response and requests details

with time. It has error tab which shows the error
occurrences along with the trace back. It also shows
exceptions that occurred along with the trace back of the
exception. It also has the option to download data of entire
session in excel file.

5.3 New Relic analysis of performance

The App side response along with time taken by each
component is recorded by New Relic. New Relic monitors the
performance of application and displays it in user friendly
UI. Application needs to be integrated with New Relic to see
the application’s performance. In the figure 2 there is an
instance of New Relic graphical representation of
performance. It has breakdown of application’s response
time with various components of app. It is easy to analyse
which components needs to be optimized. So while running
scale and load test, New Relic data was monitored to see the
bottlenecks in the app performance.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 07 | July 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2632

Fig -2: New Relic results.

6. CONCLUSION

Developed framework for testing micro-service was used to
test notification micro-service. The framework could
generate load up to 2000 Requests per second per docker
container developed. Detailed framework for testing of
functionality and load was mentioned. For testing scale 1 pod
to 3 pod configurations were load tested. A system break
point was considered when the response time breached 500
milliseconds. Throughput of system for these 3
configurations was tested.

ACKNOWLEDGEMENT

The authors thank Somesh Nandi for the collaboration of
preparing this paper and also Hewlett Packard Enterprise
for providing opportunity to work in this area.

REFERENCES

[1] Virender Ranga and Anshu Soni. “API Features
Individualizing of Web Services: REST and SOAP”. In:
International Journal of Innovative Technology and
Exploring Engineering 8 (Aug. 2019). DOI: 10.35940/
ijitee.I1107.0789S19.

[2] Festim Halili and Erenis Ramadani. “Web Services: A
Comparison of Soap and Rest Services”. In: Modern
Applied Science 12 (Feb. 2018), p. 175. DOI: 10.5539/
mas.v12n3p175.

[3] Joel L. Fernandes et al. “Performance evaluation of
RESTful web services and AMQP protocol”. In: 2013

Fifth International Conference on Ubiquitous and Future
Networks (ICUFN). 2013, pp. 810–815. DOI: 10.1109/
ICUFN.2013.6614932.

[4] Ambar Prajapati.“AMQP and beyond”.International
Conference on Smart Applications, Communications and
Networking (SmartNets). 2021, pp. 1–6. DOI:
10.1109/SmartNets50376.2021. 9555419.

[5] Kyrylo Malakhov, Oleksandr Kurgaev, and Vitalii
Velychko. “Modern RESTful API DLs and frameworks for
RESTful web services API schema modeling,
documenting, visualizing”. In: International Journal of
Advanced Research in Computer and Communication
Engineering (Nov. 2018).

