
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 08 | August 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1286

 Security Testing of Network Protocol Implementation

Pradnya Kawade1

1Student, Dept. of IT Engineering, K. J. Somaiya College of Engineering, Mumbai Maharashtra 400077, India;
---***---

Abstract – Inaccurate Network protocol implementation
can bring various consequences. Therefore, security testing of
Network protocol implementation is a hot topic for research in
information security. Design and implementation of secure
network protocol is very important nowadays. Any security
flaw in network protocol implementation leads to making the
whole network vulnerable. This paper includes security testing
methods of implemented network protocol. We use network
scanning, fuzzing for verification and exploration of network
protocol. To check suitability of network protocol we use
ESBMC, Map2Check and KLEE as software verifiers. Paper
proposes a new FuSeBMC network verification framework
model to effectively detect security vulnerabilities related to
network protocol implementation.

Key Words: Network protocol, Security testing, Fuzzing,
FuSeBMC, Runtime testing

1. INTRODUCTION

Implementation of Network protocol is one of the
challenging task. The software bugs which were introduced
during implementation of network protocol can lead to
security vulnerabilities. Even a small point of flaw can make
the whole network vulnerable. Thus developers need to
implement strict end-to-end security to maintain the secured
network. Network testing involves testing vulnerabilities in
network devices, servers, DNS, TCP and FTP are hard to
detect because the protocol software state-space is too large
to explore. Validation of possible events such as packet
access, packet loss, and timeout must have to check during
protocol implementation.

The network protocol implementation need to be verified
because of various reasons like, large state-space exploration
of protocol implementation, finding semantic error need a
machine readable specification to check whether the
implementation meets specification automatically, another
reason is since many bugs manifest themselves after a long
period of time until then they remained hidden. Therefore,
due to these problems developers needs to develop tools to
identify and verify the network protocol implementation. It’s
very challenging because there are multiple manufacturers
lead to different protocol implementation. Many errors can
introduced during implementation and can be detected
when service is in real use. Therefore, to reduce such errors
developed by programmer which can cause many high risk
vulnerabilities in network protocol, we need to develop a
reliable and accurate verification method.

Fuzzing, symbolic execution, static code analysis, taint
tracking are most common techniques to verify network
security vulnerabilities and possible threats to the network.
Here, proposed method is a combination of fuzzing and
symbolic execution to determine the security vulnerability in
the network protocol implementation. For symbolically
verifying network protocol implementations, we use two
approaches. Path exploration which is symbolic executor
explores each branch separately, thereby making a copy of
the current state and other is bounded model checking BMC.
We also use fuzzing to produce random inputs to locate
security vulnerabilities in network protocols. All though
fuzzing and symbolic execution not able to go deep in
protocol implementation. Fuzzing is not able to create
various inputs for all paths in the network protocol
implementation and symbolic execution cannot achieve high
path-coverage because of the state-space explosion problem.
Thus we have to use combination of both for better coverage.

This combination is used to generate automatically high-
coverage test packets from the network protocol
implementations. Used to detect various implementation
errors. Then we used FuSeBMC framework to verify security
vulnerability in network protocol implementation. Paper
also proposed testing of protocol at runtime in an online way
which is more complex and challenging work because tester
have to undergo a large amount of nonstop traces.

2. NETWORK PROTOCOL DESIGN

Network is defined as a group of computer devices that
are interconnected for sharing and exchanging the
information. This sharing and exchanging of information
within the network should be based on certain predefined
rules and these set of rules are called as Network protocol.
The network is implemented based on OSI and TCP/IP
network model and each layer has different protocols.

2.1 Protocol Definition

Protocols are defined by their properties. Structure of
PDU that is protocol data unit and behavioral description is
the main property. For proper processing of PDU
transmission should be carried out on binary data. Data
should be serialized at the sender and parsed at the receiver.
PDU can be divided by separating metadata and actual data
needs to be transmitted that is header and payload. Header
includes all information required by protocol to perform its
function properly. It is divided into packet fields that can
represent different in formation for protocol setting. It can

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 08 | August 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1287

include information on communication link and on payload.
The payload is at the end of PDU and can present at different
position of PDU.

Protocol also includes description of its behavior like how
to establish and maintain a connection, determination of its
different packet fields. Protocol also includes a state
transition diagram in which states and transition between
states can be represented. For example, UDP and TCP are
transport layer protocols in which UDP is simple and
stateless protocol and doesn’t have any connection status
established on transport layer. TCP is more complex than
UDP it’s a state-full and provide flow and congestion control.

2.2 Protocol goal and features

 Network protocol have different properties to achieve
secured communication goals:

 Flow and congestion control: network protocol can
adjust the flow of sending rate according to its capacity.

 Accurate sharing of information: protocol make sure
that information gets delivered without any loss.

 Duplicate filtering: packets can be duplicates during
transmission. These can be automatically identified and
dropped by network protocol

 Application separation: ensure that even though data
transmitted through same channel, data from different
application should stay separated.

 Large message support: if a sender wants to transmit
large message than its limit then, protocol should split
the message s in smaller ones and reassemble them at
the receiver.

 Maintaining the order: protocol should make sure that
data is receiving in its original order.

 Protocols should be implemented according to these
feature and properties at different layers of protocol stack.
This stack can be used in different layers to achieve high rate
adaptability. After the designing of these protocols, security
testing of network protocol implementation is very
important.

3. SECURITY TESTING METHODS

There are numerous of methods for network protocol
testing but each possesses some limitations. There is not any
technique which is reliable and accurate.

3.1 Fuzzing

 Fuzzing is a black box software testing technique to
exploit introduced vulnerabilities during implementation.
Fuzzing uses malformed and semi-malformed inputs

injection to the target network protocol. It automatically
injects data into program and detect bugs. Common method
for fuzzing is to define list of “known-to-be-dangerous
values” and injects them over a target protocol. Protocol
fuzzer send forged packets to the tested application or acts
as proxy, also it modify the request and replay them.
Protocol fuzzing is type of protocol abuse which is generally
used to test robustness of the target or any security
vulnerability like remote code execution or crashes due to
any reasons. There are numerous of factors to check in
network protocol implementation like structure, state, buffer
or integer overflow etc., Although fuzzing is not able to
create various inputs for all paths in the network protocol
implementation within a reasonable time.

3.2 Symbolic Exploration

 Symbolic execution is widely adopted to find security
vulnerabilities in network protocol implementation. It
overcomes the problem with fuzzing because it uses
symbolic inputs instead of randomly generated concrete
inputs. In this program memory and output values are
represented as symbolic expression. For network protocol
first extract the message formats from the protocol
specification of the target network protocol implementation.
Then, use these message formats to construct a concrete
packet, which is used to mark the ID field of this packet as
symbolic values to form a symbolic packet. Although,
symbolic execution have main limitations like certain
queries can be slow or unsolvable and symbolic execution
cannot achieve high path-coverage because of the state-
space explosion when analysing large problems.

4. TESTING VULNERABILITIES IN NETWORK
PROTOCOL IMPLEMENTATION

 Network protocol implementation is very complicated task
contain high risk to be prone to vulnerabilities like buffer
overflow, Denial of service, memory leak. Thus, we need a
proper tool to verify these vulnerabilities at the
implementation stage only to avoid extreme loss.

4.1 FuSeBMC Approach

 We have seen that fuzzing and symbolic execution both
are not sufficient techniques for finding vulnerabilities in
network protocol implementation. Combination of both can
give great results and coverage over vulnerabilities. There is
not any tool exists that is developed in the field of network
protocol implementation, which require dealing with packets
in the network. On the other hand some tools that are
available don’t have a combination of these two technologies.
They face problems such as path explosion or achieved low
coverage. Therefore, this paper propose the approach called
FuSeBMC used for detecting security vulnerabilities in
network protocol implementations using fuzzing and
symbolic execution. FuSeBMC uses fuzzing to generate set of
test input packets and these inputs will guide the symbolic

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 08 | August 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1288

execution and BMC engine to reach to the parts at which
fuzzing was unable to reach. Then, by using symbolic
execution and BMC we can achieve high-code coverage and
replay them against an implementation, it helps in observing
potential violations of rules derived from the protocol
specification.

Fig -1: FeSuBMC Framework

FeSuBMC framework is illustrated in above figure 1. There
are five steps for this verification framework

1. Protocol specification analyzer: produces concrete
packets and that are captured by using wireshark;

2. Fuzzing exploration: In this we fuzz the software for
exploring the function and then compute the coverage
achieved by the fuzzer

3. Symbolic packet: marks the input packet as a symbolic
packet that results in many paths. The network packet
consists of multiple fields, which are part of the packet
header. Therefore, FuSeBMC uses these fields as
symbolic variables instead of entire input packets.

4. Symbolic execution: used to reach those function that
were uncovered by fuzzer. More time can be allocated to
deep functions.

5. Symbolic marker: used to convert the concrete packet to
a symbolic packet by marking some bytes of the packet
as symbolic values.

6. FuSeBMC prototype builds on top of Map2Check as a
path-based symbolic execution engine combined with
fuzzing and ESBMC as a state-of-the-art BMC engine.
These tools explores all program paths of the network
protocol software and produce a concrete packet while
the memory monitor module reports and records the
crashes.

5. EXPERIMENTAL EVALUATION

FuSeBMC approach has an ability to detect bugs and low
verification time required to find security vulnerabilities
compared to other methods. We examined the vulnerable
FTP server which contains vulnerabilities. To test the

vulnerabilities we have used ESBMC, KLEE, Map2Check
tools. To compare vulnerability detection we have used
Spike which is based on generational fuzzer. The main goal
of this evaluation is to check the performance and reliability
of these tools and requirement to be further developed to
detect security vulnerabilities in network protocol
implementation within FuSeBMC.

We have applied ESBMC, KLEE, and Map2Check to the
vulnerable FTP server which has known buffer overflow
vulnerability. Buffer overflow vulnerability found by ESBMC,
KLEE and spike and not by Map2Check. Then we have
compared these tools for verification time, found that ESBMC
can detect the “buffer overflow” vulnerability in less than
one second, while SPIKE took about 8sec and KLEE took 2sec
to find that vulnerability. This states that existing methods
are not reliable for secured network protocol
implementation. Thus, proposed FuSeBMC approach will be
efficient for security testing of all kind of network protocol
vulnerabilities.

6. CONCLUSIONS

 This paper proposes an approach to reduce gaps in protocol
implantation. It’s a hybrid technique involving fuzzing and
symbolic execution may achieve better function coverage
than fuzzing or symbolic execution in isolation by dealing
with network packets. As a result vulnerabilities related to
deep state can be identified. It includes injection of symbolic
packets into the network so that one packet can generate
various packets to test the target protocol, which is the
advantage of this FuSeBMC approach.

REFERENCES

[1] Fu, Y. L., & Xin, X. L. “A model based security testing
method for protocol implementation” Scientific World
Journal 2014. https://doi.org/10.1155/2014/632154

[2] Pfrang, S., Giraud, M., Borcherding, A., Meier, D; Beyerer,
J. “Design of an example network protocol for security
tests targeting industrial automation systems.” ICISSP
2019 - Proceedings of the 5th International Conference
on Information Systems Security and Privacy, 727–738.
https://doi.org/10.5220/0007704907270738

[3] Scarfone, K. A., Souppaya, M. P., Cody, A; Orebaugh, A. D.
“Technical guide to information security testing and
assessment.” https://doi.org/10.6028/NIST.SP.800-115

[4] Ahmad, N. Habib, M. K. (2010). “Analysis of Network
Security Threats and Vulnerabilities by Development &
Implementation of a Security Network Monitoring
Solution.” www.bth.se

[5] Alshmrany, K. Cordeiro, L. “Finding Security
Vulnerabilities in Network Protocol Implementations.”
http://arxiv.org/abs/2001.09592

https://doi.org/10.1155/2014/632154
https://doi.org/10.5220/0007704907270738
https://doi.org/10.6028/NIST.SP.800-115
http://www.bth.se/
http://arxiv.org/abs/2001.09592

