
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 799

Binary Decompilation And Wavelet Analysis Were Used To Detect

Avionics Supply Chain Non-Control-Flow Malware

Sakshi Srivastav1, Mr. Sambhav Agarwal2

1M.Tech, Computer Science and Engineering, SR Institute of Management & Technology, Lucknow, India
2Associate Professor, Computer Science and Engineering, SR Institute of Management & Technology, Lucknow

---***---
Abstract - Non-control-flow Trojans present in embedded
systems provide a risk to the data utilized in the decision-
making process because of the risk they pose to that data. In
order to adjust for the bias in the data, the output data is
slanted in such a way that judgments are made either slightly
earlier or slightly later than what was originally intended.
This is done by keeping the system running continuously and
limiting the amount of input data that the system adjusts to a
certain geographic area. This approach eliminates the need
for the customary testing carried out by a third party. The
functional behavior of a binary may be extracted, shown in a
waveform, and anomalies—also known as localized
behaviors—can be found by using the Ghidra decompile in
combination with the discrete wavelet transform. To do this,
decode the data using Ghidra and then depict the functional
behavior using discrete wavelet transform. This idea is made
possible by the fact that the people who created the Ghidra
decompile also created the discrete wavelet transform. With
the help of Ghidra, one can do a Monte Carlo simulation of
phase-shifted Bessel functions of the first type with a Gaussian
Trojan that has random magnitude (also known as
amplitude), location (also known as mean), and breadth (also
known as variance). Ghidra may be used to better understand
the behavior of a simple programmed in operation. Ghidra
may also be used to finish out a Monte Carlo simulation of
second-order phase-shifted Bessel functions using a Gaussian
distribution. The discrete wavelet transform may identify
anomalies that are situated in a very specific focal area on the
map.

Key Words: Malware, Binary, Wavelet, Avionics Supply,
Gaussian Trojan

1. INTRODUCTION

Due to the specialised nature of military avionics
applications and missions, they are easy prey for Trojan
assaults that bypass control flows. Consider an unmanned
aerial vehicle (UAV) equipped with GPS-guided missiles and
an autonomous weapon system. The vendor writes and
supplies the guided missiles' decision-making software in
binary executable form. In order to ensure the safety of the
mission, this procedure is activated when the UAV is above
the intended target.

However, the organisation was breached before the binary
was delivered, and it contains a non-control flow Trojan in

the form of a Gaussian function; we'll call this a Gaussian
Trojan. The missile decision system incorporates this
function by appending it to the received coordinate before
sending it on. The value added is zero for almost all GPS
coordinates outside of the targets because the function is
Gaussian. The GPS guidance is manipulated by this addition,
and the payload is fired in the wrong direction. One possible
outcome is that the Trojan simply diverts the payload so that
it cannot harm anyone else. However, the Trojan may change
the target, causing collateral damage. However, please
explain the meaning of a Trojan that does not interfere with
the control flow. Much of the discussion about anti-malware
measures revolves around preventing an interruption in the
normal execution of a programme. While a programme is
being executed, the stack pointer follows a path known as
the control flow. Figure 2 shows the result. Control flow is
the process of modifying data that is used to direct execution
of an application. Trojans alter the program's execution by
rerouting control to malicious scripts or unneeded library
code [2]. View Figure 2. The dynamics of flow regulation The
system-agnostic nature of Trojans makes it possible for
hackers to exploit a wide range of platforms with the same
malicious code (i.e. granting the attacker equal or higher
privileges than the victim).

Figure-1: Program control flow diagram of Malware
free Diagram.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 800

Figure-2: Program control flow diagram of Program
with Trojan

1.1. Feature Selection Methods

Below we discuss two statistical techniques to feature
selection, principal component analysis (PCA) and logistic
regression (LR), that were selected and used due to their
good performance in feature selection work for the detection
and identification of malware. Through the use of principal
component analysis (PCA) and logistic regression
techniques, the most emblematic features of network traffic
from the CICAndMal2017 dataset were selected.

1.2. Concepts of Security.

The nature of software is established by the kind and extent
of the information it contains. One may forecast the input
and output data's sequence and time thanks to determinacy.
System designers may benefit from three separate
resources—confidentiality, integrity, and availability—as
they work to build a safe and reliable end result.

Figure-3: CIA Triad

The above diagram shows the interdependence of three core
concepts: privacy, security, and accessibility. This is known
as the CIA triad, and it is widely acknowledged as the three
most important tenets of information security. Any
vulnerability in even one part of the system might allow the
whole thing to be compromised.

1.3. Key Terminologies

There is some terminology used in the malware:

1.3.1. Attack Vector.

An attack vector is a technique for gaining unauthorized
access inside a computer or network for a criminal purpose
by exploiting the system's weaknesses.

1.3.2. Risk.

It is the potential for harm to come about as a result of any
danger in the threat landscape exploiting the system for its
own ends, including the disclosure of sensitive information
like user names and passwords, the loss of proprietary data,
and the tarnishing of the company's good name. Damage to
or loss of data stored on computer systems is another
definition of risk.

1.3.3. Threat.

Anything that can take advantage of vulnerability, either
intentionally or unintentionally, to gain access to, harms, or
destroy an asset.

1.3.4. Vulnerability.

Different threats can exploit weaknesses or holes in a
systems security programme, design policies, and execution
to obtain unauthorized access to a computer system or
network.

2. METHODOLOGY

Matlab code is located that may be used to run the
simulation of the Chapter-01 scenario. In Figures 4 and 5, we
see the instant the UAV shoots against the target (the
structure outlined in black) from a circling perspective in
Figure-4 and a birds-eye perspective in Figure 5. The
unmanned aerial vehicle (UAV) is hovering right above the
target, and the red GPS coordinates established beforehand
indicate that the payload will actually reach the target.
Figures 6 and 7 depict the inclusion of a Gaussian Trojan as a
supply-chain embedded assault to the guided missiles' GPS
readings from comparable perspectives. This allows the
system to fire the payload on a fresh target located 400 miles
distant after the UAV's GPS reading has already transmitted
the fire instruction. By extending this situation by another
degree of longitude, the distance would increase to 60 miles
(calculated using [7]).

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 801

As discussed in Chapter I, localized behavior refers to the
Gaussian Trojan's small, localized impact on the sensor
output. However, not all regional deviations in behavior are
harmful (i.e. the proper coordinates for firing the payload).
So, it's impossible to predict the total number of local
behaviors detected after accounting for noise, typical
behavior, and malicious behavior. More local activities are
likely to be considered normal or benign than malevolent.
This is discussed in more depth elsewhere, however the
phrase "localized behavior" is introduced here and used
throughout in the text.

To appreciate the originality of the approach, it is necessary
to first comprehend the shortcomings of existing control
flow Trojan detection techniques. Coding from Trojans and
other malicious programmes is often checked against
signature databases of previously detected malware [8].
While control flow Trojan signatures are generally regarded
dangerous, non-control flow Trojan signatures are not. As
seen above, the output of GPS sensors may have been
intentionally tampered with via the introduction of the
Gaussian Trojan.

Figure-4: UAV Mission.-Circling view of mission

Figure-5: UAV Mission-Birds-eye view of mission

Figure-6: UAV Mission compromised by a Gaussian
Trojan. Circling view of Mission

Figure-7: UAV Mission compromised by a Gaussian
Trojan. Birds-eye view of Mission

2.1. Modern Decompilers

Investigation and improvement of decompilers is ongoing.
Hex-Rays decompile has been the most popular commercial
solution for a long time. University researchers create their
own decompilers like Phoenix and FoxDec due to the high
price tag of commercially available options and the desire to
push decompile research ahead. In 2019, the NSA released
Ghidra, its decompiler, providing reverse engineers access to
a cutting-edge platform without the need for expensive hex-
rays or scholarly studies.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 802

2.1.1..Hex-Rays

When it comes to decompilers, Hex-Rays is the gold standard
[19, 20]. Named after the firm that created and maintains it,
Hex-Rays, the same people behind the gold standard in
disassembly, IDA Pro [20]. Hex-Rays has a price tag, but the
other decompilers we've covered here are open-source and
so free to use and contribute to. Because of this limitation,
Hex-Rays could not be used in this investigation.

2.1.2. Phoenix

Schwartz et al. [19] introduced the Phoenix decompiler in
2013. When compared to Hex-Rays [19], Phoenix's structural
analysis technique, which makes use of iterative refinement
and semantics preservation, was shown to recover 28%
more controlflow structure. Decompilations with more
information retrieved are better at extracting the binary's
functional behaviour and the consequences of the Trojan on
the programme, but they won't be any better at detecting
non-control flow Trojans.

3. RESULTS AND DISCUSSION

3.1. Test Program

Due to the lack of information, it is assumed that the soft-
trigger Trojan is an addition to the standard functioning
code. The Gaussian Trojan takes its name from the fact that a
Gaussian function with an amplitude of A, a mean of, and a
standard deviation of 2 is quite close to 0 everywhere except
for the range between 32 and + 32. So, to achieve the always-
on state with minimal alterations to other outputs, it is just
to add 0 to the standard signal output. This extension
creates, by definition, a regionalized pattern in the system
output.

Interesting enough, while initialise Domain is called with five
parameters in main, the function signature only contains
four input arguments. An unsigned long variable is initialised
and returned unmodified by the function. The recompiled
code is a poor representation of the original algorithm. This
is clearly not the intended functional behaviour of initialise
Domain, since the primary purpose of a function should
never be to initialise an unused variable and return it.

Figure-8: Full window view

Figure-9: Remaining code in main

In order to do some last arithmetical manipulations on
Normal Behavior before the programme exits, it loops back
through main as shown before. There's a lot of clutter in the
code, and it has to be organised. From the standpoint of the
attacker, the Trojan will be concealed (obfuscation, evolved,
etc). The analyst will assume that there are no functions with
names like Normal Behavior since all of the program's
functionality is considered normal. As a result, you shouldn't
assume that the analysis will be as easy as this one.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 803

Figure-10: Normal Behavior decompiled function in
Ghidra.

4. CONCLUSIONS

Soft-trigger, always-on, non-control-flow Trojans may be
detected in their early stages by recompilation and wavelet
analysis. Ghidra is more of a reverse engineering tool than a
generator of safe, recompilable source code, so keep that in
mind if you plan on using it for the latter purpose. We can
infer sufficient functionality from the tested basic binary. On
the other hand, the static Ghidra decompile may not be
enough for a more complicated and, thus, more realistic
binary. Cleaning up the code might be difficult and time-
consuming if you don't have a firm grasp of the algorithms
included in the decompiled binaries.

The DWT is a powerful tool for finding small-scale
aberrations in wavelet analysis. In all three of these extreme
examples, the Trojan created a strong pulse in high
frequency channels that were normally quite flat (or zero)
(i.e. Levels 1 & 2). Since pulses do not appear in either the
high- or low-frequency channels, it may be concluded that
wavelet analysis does not function for more diffuse
abnormalities. Because of this, finding them before they pass
the third-party test suite becomes more challenging.

Last but not least, it is abundantly clear that non-control-
flow Trojans that directly target decisionmaking data in
embedded systems pose a significant risk to avionics and
other embedded technology. These Trojans might infect
everything from a weapon system's navigation algorithm to
an autonomous vehicle's proximity sensor, causing fire
alarms to go off, unmanned aerial aircraft to stray off course,
and the public to be placed in danger. As the world continues
to push the boundaries of autonomous systems, non-control-
flow Trojans become a greater threat to the safety of
innocent people.

REFERENCES

1. S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-
control-data attacks are realistic threats,” Proceedings of the
USENIX Security Symposium, pp. 177 – 192, 2005.

2. C. Cifuentes and K. J. Gough, “Decompilation of binary
programs.” Software-Practice & Experience, vol. 25, no. 7, pp.
811 – 829, 1995.

3. “Cert-eu latest security advisories,”

4. https://cert.europa.eu/cert/newsletter/en/latest
SecurityBulletins .html.

5. “Multiple vulnerabilities in citrix,”
https://media.cert.europa.eu/static/
SecurityAdvisories/2021/CERT-EU-SA2021-027.pdf.

6. “Critical vulnerability in vmware vcenter server,”
https://media.cert.europa.eu/static/
SecurityAdvisories/2021/CERT-EU-SA2021-025.pdf.

7. M. Tehranipoor and F. Koushanfar, “A survey of hardware
trojan taxonomy and detection.” IEEE Design & Test of
Computers, Design & Test of Computers, IEEE, IEEE Des.
Test. Comput, vol. 27, no. 1, 2010.

8. “Latitude/longitude distance calculator,”
https://www.nhc.noaa.gov/gccalc.shtml.

9. M. Sikorski and A. Honig, Practical Malware Analysis.
William Pollock, 2012.

10. “Virustotal,” https://www.virustotal.com/gui/.

11. M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-
flow integrity principles, implementations, and applications,”
12th ACM Conference on Computerand Commu- nications
Security, 2009.

12. A. Seshadri, M. Luk, N. Qu, and A. Perrig, “Secvisor: A tiny
hypervisor to provide lifetime kernel code integrity for
commodity oses,” 12th ACM Conference on Computer and
Communications Security, 2007.

13. W. Xu, D. C. DuVarney, and R. Sekar, “An efficient and
backwards-compatible transformation to ensure memory
safety of c programs.” ACM SIGSOFT Software Engineering
Notes (ACM Digital Library), vol. 29, no. 6, pp. 117 – 126,
2004.

14. D. Dhurjati and V. Adve, “Backwards-compatible array
bounds checking for c with very low overhead.” ICSE:
International Conference on Software Engineering, pp.162–
171, 2006.

15. S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic,
“Softbound: Highly compatible and complete spatial memory
safety for c.” ACM SIGPLAN NOTICES, vol. 44, no. 6, pp. 245 –
258, 2009.

16. ets: Compiler-enforced temporal safety for c.” ACM
SIGPLAN NOTICES, vol. 45, no. 8, pp. 31 – 40, 2010.

17. C. Cifuentes, “Reverse compilation techniques,” Ph.D.
dissertation, Queensland University of Technology, 1994.

https://media.cert.europa.eu/static/
https://media.cert.europa.eu/static/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 09 | Sep 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 804

18. M. H. Halstead, Machine-independent computer
programming. Spartan Books, 1962.

19. Data Based Advisor. [electronic resource]., ser. Lexis-
Nexis Academic, n.d.

20. E. J. Schwartz, J. Lee, M. Woo, and D. Burnley, “Native x86
decompilation using semantics-preserving structural
analysis and iterative control-flow structuring.” Proceedings
of the 22nd USENIX Security Symposium, 2013.

21. “Hex rays–state-of-the-art binary code analysis tools,”
https://hex-rays.com/.

22. F. Verbeek, P. Olivier, and B. Ravindran, “Sound c code
decompilation for a subset of x86-64 binaries,” Proceedings
of the 18th International Conference on Software
Engineering and Formal Methods, 2020.

23. “Ghidra webpage,” https://ghidra-sre.org/.

24. “Ghidra blog,” https://ghidra.re/.

25. R. Messier and M. Berninger, Getting Started with Ghidra.
[electronic resource]. O’Reilly Media, Inc., 2019.

26. C. Eagle and K. Nance, The Ghidra Book. [electronic
resource]. No Starch Press, 2020.

27. D. Sundararajan, Discrete wavelet transform : a signal
processing approach. John Wiley & Sons, 2015.

28. M. Golgowski and S. Osowski, “Anomaly detection in ecg
using wavelet transformation.” 2020 IEEE 21st International
Conference on Computational Problems of Elec- trical
Engineering (CPEE), pp. 1 – 4, 2020.

29. O. Aydin and M. Kurnaz, “Wavelet-based anomaly
detection on digital signals.” 2017 25th Signal Processing
and Communications Applications Conference (SIU), Signal
Processing and Communications Applications Conference
(SIU), 2017 25th, pp. 1 – 3, 2017.

30. H. V. Poor, An Introduction to Signal Detection and
Estimation. Dowden & Culver, 1994.

31. “Avida by devosoft,” https://avida.devosoft.org/.

32. S. Dolan, “mov is turing-complete,” Computer Laboratory,
University of Cambridge, pp. 1 – 4, 2013.

